Reg. No.: 10 423 030

Name: Devika Navi &

Seventh Semester B.Tech. Degree Examination, May 2014 (2008 Scheme)

08.703 : MICROWAVE ENGINEERING (T)

Time: 3 Hours

A HANNAMMOOLA

Answer all questions. Each question carries 4 marks.

(10×4=40 Marks)

- 1. Explain re-entrant cavities.
- 2. Explain bunching effects in klystrons.
- 3. Why conventional tubes can not be operated in high frequencies?
- 4. Draw the output equivalent circuit of a 2 cavity klystron. Derive the power output.
- 5. Explain how helical coil is used as slow wave structure.
- 6. What is strapping in magnetrons?
- 7. What are different modes of operation of gunn diode?
- 8. Explain common source amplifier using MESFET.
- 9. Explain how a circulator can be converted to an isolator.
- Explain the difference between base band and IF repeaters in microwave communication.

PART-B

Answer any 2 questions from each Module.

Module - I

(6×10=60 Marks)

11. A 2-cavity klystron amplifier has the following parameters'

$$V_0 = 1000V; R_0 = 40 K\Omega$$

$$I_0 = 25 \text{ mA}; f = 3 \text{ GH}_2$$

Gap spacing in either cavity: d = 1 mm

Spacing between the 2 cavities: L = 4 cm

Effective shunt impedance

Excluding beam loading: Rsh = 30 K Ω .

- a) Find the input gap voltage to give maximum voltage V2.
- b) Find the voltage gain, neglecting the beam loading in the output cavity
- c) Find the efficiency of amplifier, neglecting beam loading
- d) Calculate the beam loading conductance and show that neglecting it was justified in the proceeding calculations?
- 12. Explain the working of reflex klystron.
- 13. With diagram explain the amplification process in travelling wave tube. What is the significance of electronic and circuit equations?

Module - II

14. An x-band pulsed conventional magnetron has the following operating parameters

A node voltage : $V_0 = 5.5 \text{ kV}$; Beam current; $I_0 = 4.5 \text{ A}$

Operating frequency F = 9 GHz; Resonator conductance $= G_r = 2 \times 10^{-4} \text{ J}$;

loaded conductance; $G_1 = 2.5 \times 10^{-5} \text{ } \text{ } \text{U}$. Vane capacitance : C = 2.5 pf;

Daly cycle: DC = 0.002 Powerloss Ploss = 18.5 kW compute.

- a) The angular resonant frequency
- b) The unloaded quality factor
- c) The loaded quality factor
- d) The external quality factor
- e) The circuit efficiency
- f) The electronic efficiency.

- 15. Explain the principal of operation of Gunn diode oscillator and amplifier.
- 16. Explain the principal of operation of tunnel diode.

Module - III

- 17. Explain the methods for measurement of frequency and impedance.
- 18. Explain 2 hole directional coupler.
- Describe the most commonly used diversity schemes for microwave communication system.